top of page

 
Early Posters

Here shows the selected posters of the elder years.

   


2017

Beyond the Conversion Limit in Resonant Four-Wave Mixing Process
 

3.jpg

ABSTRACT

Long-range quantum optical communication needs a nonlinear process  that  changes  the  wavelength  of  the  quantum  optical states  with  high  conversion  efficiency  (CE).  However,  CE  in resonant N-type four-wave mixing (FWM) processes saturates at 25% due to the vacuum field fluctuations. An improved scheme, using spatially varied intensity of two laser fields, for exceeding the conversion limit (25%) has been theoretically proposed. Here, we  report  the  first  observation  of  wavelength  conversion with 43% CE by using such scheme at optical depth (OD) of 18 in cold rubidium atoms. According to the theoretical model, CE in the proposed  scheme  can  further  increase  to  96%  at  OD  of  240, which reaches the same CE compared to previous non-resonant FWM system but only using half of OD. This novel scheme can reach almost unity CE of FWM for a sufficiently large OD, thus providing us to implement a high-fidelity quantum wavelength converter for the practical applications in quantum information science.

 
 
 
2013

Toward Generation of Polarization-Entangled Photons by Four-Wave Mixing

11.png

ABSTRACT

We report experimental results toward generation of polarization-entangled photons using N-type four-wave mixing (FWM) in cold {87}^Rb atoms. This FWM scheme is based on a well-known effect of electromagnetically induced transparency (EIT). Using this scheme, we can implement high-brightness polarization-entangled photons with narrow bandwidth. To protect the entangled photons from additional absorption, we optically pumped the atoms into a single Zeeman state [1]. Next, we are going to measure the wave function of the generated entangled photons using quantum-state tomography. In the future, the polarization-entangled photons will be applied in the study of EIT-based quantum storage of superposition states. Such a narrow-bandwidth source of entangled photons is suitable for studying nonlinear optical quantum computation and quantum communication.

2012

THEORETICAL STUDY OF PHASE-DEPENDENT DOUBLE-LAMBDA
ELECTROMAGNETICALLY INDUCED TRANSPARENCY

12.png

ABSTRACT

We propose a novel all-optical phase modulation based on a phase-dependent double-Lambda electromagnetically-induced-transparency system. According to our theoretical analysis,
the phase modulation of the double-Lambda system can not only overcome the limitation of the N-type system , but also have the potential to achieve a single-photon p phase gate.

2011

Electromagnetically Induced Transparency Based Cross-Phase Modulation at Attojoule Levels

ABSTRACT

The  processing  of  information  based  on  light  often  requires strong  photon-photon  interactions.  A  promising  approach  to creating   strong   photon-photon   interactions   is   the   use   of electromagnetically  induced  transparency  (EIT).  Recently,  all-optical switching based on EIT has been realized in an atom-filled hollowfiber with light pulses containing a few hundred photons. However, a more important issue is the all-optical phase control, the so-called cross-phase-modulation (XPM), that can be used to implement quantum phase gates and entangled states. Here we report an experimental demonstration of EIT-based XPM at few-hundred-photon levels. A phase shift of 5 mrad of a probe pulse modulated by a signal pulse with an energy of 100 attojoules, equivalent to about 400 photons, was observed in cold Rubidium atoms. The experimental data show the single-photon-level XPM phase shift is about 1.3×10^-5 rad, which is in good agreement with   the   theoretical   prediction.   This   work   offers   exciting prospects   to  the  realization  of  EIT-based  XPM  scheme  at  the single-photon level and benefits experimental development in few-photon applications of EIT-based techniques for quantum optics and quantum information science.

2010

Ultralow-Light-Level Phase Measurement of Slow Light Pulses via Beat-Note Interferometer

ABSTRACT

The phase is one of important and manageable information carried by photons which can be used as qubits in quantum communication and computation, thus the ability to control the optical phase at the single-photon level will be a benefit to quantum information science. In recent decades an unique phenomenon of electromagnetically induced transparency (EIT) with the property of extremely high dispersion has been extensively studied and applied in many interesting subjects. Several studies based on EIT have proposed to efficiently enhance photon-photon interaction even at the single-photon level, such as photon switching and cross-phase modulation. Here we report on an experimental demonstration of applying the beat-note interferometer to simultaneously measure the phase and amplitude variations of light pulses after propagating through an EIT medium at the single-photon levels. Furthermore, we observe that the measured phase noise approaches the shot-noise level arising from the fluctuations of detected photons.

 

 

  

bottom of page